Popularity
6.5
Declining
Activity
0.0
Stable
1,292
40
131

Description

A ruby library which implements ID3 (information gain) algorithm for decision tree learning. Currently, continuous and discrete datasets can be learned.

Code Quality Rank: L5
Monthly Downloads: 1,218
Programming language: Ruby
License: MIT License
Tags: Scientific     Specific     Projects    
Latest version: v0.5.0

decisiontree alternatives and similar gems

Based on the "Specific" category.
Alternatively, view decisiontree alternatives based on common mentions on social networks and blogs.

Do you think we are missing an alternative of decisiontree or a related project?

Add another 'Specific' Gem

README

Decision Tree

A Ruby library which implements ID3 (information gain) algorithm for decision tree learning. Currently, continuous and discrete datasets can be learned.

  • Discrete model assumes unique labels & can be graphed and converted into a png for visual analysis
  • Continuous looks at all possible values for a variable and iteratively chooses the best threshold between all possible assignments. This results in a binary tree which is partitioned by the threshold at every step. (e.g. temperate > 20C)

Features

  • ID3 algorithms for continuous and discrete cases, with support for inconsistent datasets.
  • Graphviz component to visualize the learned tree
  • Support for multiple, and symbolic outputs and graphing of continuous trees.
  • Returns default value when no branches are suitable for input

Implementation

  • Ruleset is a class that trains an ID3Tree with 2/3 of the training data, converts it into set of rules and prunes the rules with the remaining 1/3 of the training data (in a C4.5 way).
  • Bagging is a bagging-based trainer (quite obvious), which trains 10 Ruleset trainers and when predicting chooses the best output based on voting.

Blog post with explanation & examples

Example

require 'decisiontree'

attributes = ['Temperature']
training = [
  [36.6, 'healthy'],
  [37, 'sick'],
  [38, 'sick'],
  [36.7, 'healthy'],
  [40, 'sick'],
  [50, 'really sick'],
]

# Instantiate the tree, and train it based on the data (set default to '1')
dec_tree = DecisionTree::ID3Tree.new(attributes, training, 'sick', :continuous)
dec_tree.train

test = [37, 'sick']
decision = dec_tree.predict(test)
puts "Predicted: #{decision} ... True decision: #{test.last}"

# => Predicted: sick ... True decision: sick

# Specify type ("discrete" or "continuous") in the training data
labels = ["hunger", "color"]
training = [
        [8, "red", "angry"],
        [6, "red", "angry"],
        [7, "red", "angry"],
        [7, "blue", "not angry"],
        [2, "red", "not angry"],
        [3, "blue", "not angry"],
        [2, "blue", "not angry"],
        [1, "red", "not angry"]
]

dec_tree = DecisionTree::ID3Tree.new(labels, training, "not angry", color: :discrete, hunger: :continuous)
dec_tree.train

test = [7, "red", "angry"]
decision = dec_tree.predict(test)
puts "Predicted: #{decision} ... True decision: #{test.last}"

# => Predicted: angry ... True decision: angry

License

The MIT License - Copyright (c) 2006 Ilya Grigorik


*Note that all licence references and agreements mentioned in the decisiontree README section above are relevant to that project's source code only.