Popularity
1.3
Stable
Activity
0.0
Stable
44
2
6

Description

An implementation of a linear regression machine learning algorithm implemented in Ruby.

Monthly Downloads: 2,616
Programming language: Ruby
License: MIT License

Ruby Linear Regression alternatives and similar gems

Based on the "Machine Learning" category.
Alternatively, view Ruby Linear Regression alternatives based on common mentions on social networks and blogs.

Do you think we are missing an alternative of Ruby Linear Regression or a related project?

Add another 'Machine Learning' Gem

README

Ruby Linear Regression

Gem Version

An implementation of a linear regression machine learning algorithm implemented in Ruby.

Features:

  • Supports simple problems with one independent variable to predict a dependent variable and multivariate problems with multiple independent variables to predict a dependent variable.
  • Supports training using the normal equation
  • Supports training using gradient descent
  • The library is implemented in pure ruby using Ruby's Matrix implementation.

Installation

  gem install ruby_linear_regression

Example of usage - Train model using normal equation

require 'matrix'
require 'csv'
require 'ruby_linear_regression'

x_data = []
y_data = []
# Load data from CSV file into two arrays - one for independent variables X (x_data) and one for the dependent variable y (y_data)
CSV.foreach("staten-island-single-family-home-sales-2015.csv", :headers => true) do |row|
  # Each row contains square feet for property and living area like this: [ SQ FEET PROPERTY, SQ FEET HOUSE ]  
  x_data.push( [row[0].to_i, row[1].to_i] )
  y_data.push( row[2].to_i )
end

# Create regression model
linear_regression = RubyLinearRegression.new

# Load training data
linear_regression.load_training_data(x_data, y_data)

# Train the model using the normal equation
linear_regression.train_normal_equation

# Output the cost
puts "Trained model with the following cost fit #{linear_regression.compute_cost}"

# Predict the price of a 2000 sq feet property with a 1500 sq feet house
prediction_data = [2000, 1500]
predicted_price = linear_regression.predict(prediction_data)
puts "Predicted selling price for a 1500 sq feet house on a 2000 sq feet property: #{predicted_price.round}$"

More details about this example implementation can be found in this blog post.

Example of usage - Train model using gradient descent

require 'matrix'
require 'csv'
require 'ruby_linear_regression'

x_data = []
y_data = []
# Load data from CSV file into two arrays - one for independent variables X (x_data) and one for the dependent variable y (y_data)
CSV.foreach("staten-island-single-family-home-sales-2015.csv", :headers => true) do |row|
  # Each row contains square feet for property and living area like this: [ SQ FEET PROPERTY, SQ FEET HOUSE ]  
  x_data.push( [row[0].to_i, row[1].to_i] )
  y_data.push( row[2].to_i )
end

# Create regression model
linear_regression = RubyLinearRegression.new

# Load training data
linear_regression.load_training_data(x_data, y_data)

# Train the model using gradient descent
linear_regression.train_gradient_descent(0.0005, 1000, true)

# Output the cost
puts "Trained model with the following cost fit #{linear_regression.compute_cost}"

# Predict the price of a 2000 sq feet property with a 1500 sq feet house
prediction_data = [2000, 1500]
predicted_price = linear_regression.predict(prediction_data)
puts "Predicted selling price for a 1500 sq feet house on a 2000 sq feet property: #{predicted_price.round}$"